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Abstract--The migration of particles across fluid streamlines has been observed to occur in a variety of 
suspension flows. This lateral particle migration can either heat or cool the suspension depending upon 
the differences in the specific heat capacities of the fluid and solid phases, and the direction of migration 
with respect to the lateral temperature gradient. Rigid spheres and rodlike particles migrate toward the 
wall in the creeping flow of a Newtonian fluid through a convergent channel. The temperature drop across 
a convergent channel is calculated and shown to be negligibly small for the injection molding of a polymer 
composite. 

1. I N T R O D U C T I O N  

Fluids containing solid particles occur throughout the physical and biological sciences. Under 
certain circumstances the particles migrate across the fluid streamlines. Gauthier et al. (1971) have 
observed lateral particle migration in Couette and Poiseuille flows of power-law and elasticoviscous 
fluids. In power-law fluids, particles migrate towards the region of higher velocity gradient while 
in elasticoviscous fluids, the particles migrate toward the region of lower velocity gradient. In the 
pipe flow of a Newtonian fluid at moderate Reynolds number, Segr6 & Silerberg (1961) observed 
the accumulation of particles at some radius between the wall and the axis. Faxen's law and its 
recent extensions make it possible to calculate particle migration in a creeping Newtonian flow 
containing rigid spheres or prolate spheroids. 

The purpose of this paper is to calculate the particle migration in a convergent channel in order 
to study the effect of particle migration upon heat transfer. We will not consider wall effects, 
buoyancy effects or interactions between particles. The second section of this paper will derive a 
differential equation relating particle migration rate to heat transfer. The third section will calculate 
the migration of rigid spheres or prolate spheroids in the creeping flow of a Newtonian fluid 
through a convergent channel. The fourth section will compute the temperature change across a 
convergent channel due to particle migration, and the fifth section will apply the results to the 
injection molding of polymer composites. 

2. HEAT TRANSFER 

Consider the steady-state one-dimensional flow of a fluid containing volume concentration ~ of 
solid particles (see figure 1). The x- and y-coordinates are parallel and perpendicular (respectively) 
to the rectilinear streamlines. The ambient fluid flow has velocity v = v~; the particles have velocity 
U = Ux:~ + Uyf. We assume that the particle velocity in the x-direction, Ux, differs only slightly 
from the ambient fluid velocity v. The particles migrate across the fluid streamlines with velocity 
Uy. In order to conserve mass, there must be a return flow of fluid at velocity ~ U y / ( 1 -  ~), 
perpendicular to the bulk flow direction and opposite to the direction of particle migration. Both 
fluid and particles have density p. The solid particles have specific heat capacity cs, the fluid has 
specific heat capacity cf and the suspension has an effective heat capacity ce given by 

ce = cf(1 -- ~b) + c,~b. [1] 

We assume the fluid and particles to be in thermal equilibrium at temperature T. 
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Figure 1. Energy balance in the control volume. 

Figure 1 illustrates the energy balance in a control volume fixed in space. Since we wish to study 
only the effects of particle migration, we have not included thermal conduction or shear heating. 
Assuming no net flux of energy into the control volume, we obtain by inspection of figure 1: 

(cf - cs) ~y (~b Uy T) = cf [(1 - dp)v T] + cs (dp Ux T). [21 

Conservation of fluid and particles requires that 

[v(1 - 4,)] a ~x - ~ (~vy) = 0 [3] 

and 

ex (4,u~) ay ( ~ u  A = 0. 

Combining [1], [3] and [4] with [2] and setting Ux = v + E yields 

dT dT 
(coy + c~6E) ~x = ( c r -  ~,)~,t;~ Tjy. 

[4] 

[s] 

Since E <<v, we can neglect the second term on the 1.h.s. of [5] to obtain 

1) ~T  = ~cf -- Cs~ U ~T  
~X ~k Ce / (PY-~w"  

[6] 

Equation [6] can be rewritten as 

dT ( c r - -Cs~ f~uy~T  
d t  = \ - Z - ~  / ~y' [7] 

where the operator "d /d t "  represents the total derivative of a material point of fluid. Equation [7] 
gives the rate of change in temperature of a material point of fluid as it travels along a streamline 
through spatially varying Uy, 4) and dT/t3y. Terms representing thermal conduction or shear 
heating can readily be added to the r.h.s, of [7]. Note that [7] has been derived only for a steady 
state in which all variables are independent of time at a fixed point. 

It will be shown in the next section that, for convergent flow, particles migrate toward the wall. 
In injection molding the temperature normally decreases toward the wall; thus, the product 
Uy(t3T/Oy) is negative. For most polymer composites, cf> c,. Therefore, the effect of particle 
migration is to cool a polymer composite as it flows from the large to the small end of a convergent 
channel. 
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3. PARTICLE M I G R A T I O N  

In order to calculate particle migration we first solve for the two-dimensional creeping flow 
between plates which intersect at an angle ct (see figure 2). Conservation of momentum and mass 
in cylindrical coordinates require 

{~ ~2V r 1¢~2v, I ~Vr 2 t3v o v, ) 
ar = g \ ar2 + ~ ~-~Y + r t3r r2 aO -~ 

1 ~p i/•2Vo 1 021)0 1 dvo 2 dv, vo'~ 
) 

[8] 

[9] 

and 

~v, 1 ~Vo V~ 
+ + --r = O, [101 

where r is the distance from the apex in the plane of flow, 0 is the angle between the r-axis and 
the plane bisecting the channel, v, is the velocity in the r-direction, v0 is the velocity in the 
0-direction, p is the pressure and # is the dynamic viscosity. The no-slip boundary conditions are 

The solution of [8]-[11] is 

Gt 
v , = v o = O  at 0 = + ~ .  [11] 

A 
v, = - [ c o s ( 2 0 )  - c o s ( s ) ]  7 

r ~ [12] 

v o ---- O, 

where A is a constant proportional to the mass flux. Positive A indicates divergent flow while 
negative A indicates convergent flow. Since the streamlines are lines of constant 8, lateral particle 
migration is given by particle velocity in the P-direction. 

Faxen (1924) showed the translational and angular velocity of a rigid sphere suspended in an 
unbounded creeping flow to be 

R 2 
U = Vo + ~ V2vo [13] 

and 

1 
to = ~ V  x Vo, [14] 

where U is the translational velocity, to is the angular velocity, R is the sphere radius, v is the 
ambient velocity field and the subscript "o"  indicates evaluation at the center of the sphere. The 
quantity v o is the fluid velocity at the position of the center of the sphere which would occur if 
the sphere were not present. It is clear from [13] that lateral migration does not occur in flow 

Figure 2. Geometry for two-dimensional flow between plates intersecting at an angle ~c 
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between parallel walls. Inserting [13] into [12] we find the lateral migration rate for convergent flow: 

Uo = - 2AR2 sin(20). [15] 
3r 3 

Spheres migrate toward the walls in convergent flow and toward the axis in divergent flow. 
Brenner (1964, 1966) obtained U and to for an ellipsoid in terms of an infinite series of differential 

operators. Such a formulation is convenient for calculations in Couette or Poiseuille flow since the 
series truncates after several terms (Brenner & Haber 1983). However, for a nonpolynomial flow 
such as [12] the infinite series is difficult to evaluate. Recently, Hasimoto (1983) and Kim (1985) 
independently derived an integral formula for the translational and angular velocity of a rigid 
prolate spheroid suspended in an unbounded creeping flow: 

1 ~ 2 ) ~ V 2 1 v ( ~  ) U=~cc f~c[1 +(c2- d~ [16] 

and 

to =~5c3 (c 2 -  ~2)V x v(~) d~ -t- 4c3 ( 2 _  e2 ) ( c 2 - ~  2) 
- - c  - - c  

(I -- e z) VE ] d 
x 1 + ( c 2 - ¢ 2 ) ~  _1 x e ( ¢ ) ' d d ¢ ,  [17] 

where ¢ is the distance along the spheroid axis (¢ = 0 indicates the spheroid center), c is the distance 
from center to focus, e = c / a  is the eccentricity (a is the length of  the major semiaxis), d is the unit 
vector denoting the orientation of the spheroid axis and e is the rate-of-sti'ain tensor. Equations 
[16] and [17] are the Faxen laws for force-free and torque-free spheroids. It is clear from [16] that 
lateral migration does not occur for flow between parallel walls. 

For most applications a number of simplifications are possible. Let b = (a z - c2) ~/2 be the length 
of the minor semiaxis and l the length scale of  flow. For example, for a particle in a convergent 
flow the length scale is r. If (b/l)2<< 1, then the terms involving the Laplacian operator in [16] and 
[17] can be dropped, yielding 

U = 1 v(~) d~ [18] 
2c -c 

and 

3 f C to = ggc3 (c 2 - ~2)V x v (~ )  d~  
- - c  

3 e 2 f ]  
4 4 c 3 ( 2 - - e 2  ) ~ ( c 2 - ~ 2 ) d x e ( ~ ) ' d d ~ '  [191 

Now expanding v as a Taylor series about ~ = 0 and integrating, we obtain 

c 2 02vl 
U = v(O) + -~ 3-~5 ° + . . "  [20] 

and 

e 2 c 2 02 c2e  2 0 2 
to = ½ V x v(0) + (2----S-~ d x e(0).d + ~-(~ 3--~5 V x rio + 10(2_ e2) o ~ d  x e.dlo + - • •. [21] 

Equations [20] are series expansions in powers of  ( c / l )  2. It is difficult to imagine a flow through 
a confined channel for which ( c / l )  2 could be much greater than about 10 -2. The particles would 
either break or become stuck. Thus, for simply calculating the position and orientation of a 
spheroid within a confined flow the zeroth-order solution of [20] and [21] is quite adequate. The 
zeroth-order solution is the first term on the r.h.s, of  [20] and the first two terms of the r.h.s, of 
[21]. The zeroth-order solution could also have been derived by a truncation of the infinite series 
expansion of Brenner (1964, 1966). Workers at the Center for Composite Materials (Givler et  al. 

1983; Gillespie et  al. 1985) have produced a numerical simulation of spheroid position and 
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Figure 3. Trigonometry for obtaining the coordinates of  the spheroid axis projected onto the plane of  
flow. 
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orientation which takes into account the flow velocity and velocity gradient only at the spheroid 
center. It is clear from [20] and [21] and the magnitude of (C/[)  2 that their method of numerical 
simulation is sufficiently accurate even for nonuniform velocity gradients. The zeroth-order 
solution predicts no motion of the center of the particle relative to the velocity field. Particle 
migration is a second-order effect and is important only insofar as it affects heat transfer, mixing 
or other characteristics besides particle position and orientation. 

We will calculate Uo to second order, but retain only the zeroth-order terms for Ur and ta. Thus, 
the radial particle velocity Ur is simply v, given in [12]. Harris & Pittman (1976) included only 
the zeroth-order terms in [21] and found an approximate solution for the orientation of a prolate 
spheroid as a function of position within the convergent channel. Their approximations are 
equivalent to assuming, first, that we can neglect terms involving t3Vr/aO (the "Couette shear") 
relative to terms involving t~vr/~r (the "accelerating shear") and, second, that c >> b. We have already 
assumed c >>b by keeping terms of order ( c / r )  ~ while dropping terms of order (b / r )  2. (Spheroids 
for which c >>b are often called "rodlike particles".) Let ). be the clockwise angle between the r-axis 
and the projection of the spheroid axis onto the plane of flow (see figure 3), and Z be the angle 
between the spheroid axis and the plane of flow. Then, with the above approximations, Harris & 
Pittman (1976) found that 

r 2 
tan 2 = tan 2 i~  [22] 

r~ 

and 

r 
tan Z = tan Zi-, [23] 

ri 

where the subscript 'T'  indicates an initial value. 
We now proceed to the calculation of Ue for a rodlike particle. Equation [18] can be rewritten 

a s  

2~c (cU) = v(~ = c) + v(~ = - c ) .  [24] 

Expanding the r.h.s, of [24] to order ( c / r )  2 and integrating with respect to c will yield an expression 
for U0 correct to order ( c / r )  2. Figure 3 shows the projection of the spheroid axis onto the plane 
of flow. Let the ~'-axis be the projection of the l-axis (the spheroid axis) onto the plane of flow. 
Let the coordinates of the center of the spheroid axis (~' = 0), the positive focus of the spheroid 
axis (~ '=  + c  cos Z) and the negative focus of the spheroid axis (~ '=  - c  cos X) be respectively, 
(r, 0), (r+, O+) and ( r , / 9  ). Using trigonometry we obtain 

r+ = (c '2 + r 2 -- 2c '  r cos 2)½, [25] 

r_ = (c '2 + r 2 + 2c'r cos 2)½, [26] 

0+ = 0 + sin-' ( c '  sin______~2') [27] 
\ r+ ] 
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and 

0_ = 0 - sin- '  (c' sin 2~, [28] 
\ r / 

where c'  = c cos g. Projecting the fluid velocities at the foci onto the O-direction as defined at the 
spheroid center, we obtain 

2 ~ (cUo) = v,(¢' = c cos Z) sin (0+ - 0) - v,(~' = - c  cos z)sin(0 - 0 ). [29] 
dc 

Then inserting [12] and [25]-[28] into [29], expanding the r.h.s, and integrating, yields 

Uo = - ~ cos2)~ {sin2`1 sin (20) - cos 1̀ sin 1̀ [cos (20) - cos (e)]}. [301 

Note that [30] does not reduce to [15] in the limit c ~ 0  because we have assumed c>>b. 
For convergent flow, the first term on the r.h.s, of  [30] predicts migration toward the wall, while 

the second term predicts motion either toward or away from the wall depending upon the 
orientation. For rodlike particles aligned with the r-axis, Uo = 0. We wish to determine the average 
particle motion by averaging over all possible initial orientations in 2. Assume the orientations to 
be uniformly distributed in 1̀ at r = r i and define 

! 
( f ) ~  = rr f(`1i ) d2i. [311 

Then combining [22] and [23] with [30] and [31] yields 

1 
(Uo)~ = T sin(20)c°s2)~ [32] 

r l l  + ( r ' )  2-] 
\ r i]  _1 

Thus, in covergent flow, the average spheroid motion is toward the wall just as in the spherical 
case. 

4. T E M P E R A T U R E  C H A N G E  ACROSS A C O N V E R G E N T  C H A N N E L  

The purpose of this section is to calculate the temperature change across a convergent channel 
due to particle migration and the difference in specific heat capacities between the fluid and the 
particles. For the convergent flow defined by [12] it is clear that the analogue of [7] in cylindrical 
coordinates is 

d T  (cf--Cs~uo~ lt~Z [331 
dt \ c¢ / r a0" 

From [4] and [13] or [16] it is clear that q~ = const is a solution to the equation of conservation 
of particles. If we regard the concentration as uniform at the entrance to the channel, then we can 
take ~b to be a constant throughout the channel. The temperature gradient (1/r)dT/dO can be 
determined only by solving the time-dependent energy equation including conduction and shear 
heating. Since we wish to study only the effects of  particle migration, we take the lateral 
temperature gradient to be a constant G and calculate the temperature change for a range of 
constants. 

Let the suspension flow into the channel at r = ri and out of the channel at r = ro < r~. Then the 
temperature change AT across the channel is 

AT = ~bG 0 ~  r dr. [34] 
i 

From [12], we obtain 

dt r 
d---; = A[cos (20) - cos (~)] [35] 
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Thus [34] becomes 

AT = (Cf-  Cs~ d?G 1 
\ co / A cos(20)-cos(~) i rUodr. [36] 

We first consider the temperature change due to the migration of spheres. Inserting [15] into [36] 
and integrating yields 

{c f -  c~'~ 2$GR 2 sin(E0) r i -  ro 
AT [37] 

t \ c~ # / 3 cos(20)-cos(ct) rori 

We next calculate the temperature change due to the migration of rodlike particles. We set X = 0 
in [32], thus setting an upper bound on AT. Combining [32] with [36], we obtain 

=(cf--Cs~2~)G(c~ 2 sin(20)I-re (r0)] 
AT \------~-] - - ~  \ ~ /  cos(20) - cos(or) ri L- ~ - tan -~ ~i " [38] 

5. INJECTION MOLDING 

Injection molding is an automated process for the conversion of a quantity of solid polymer into 
a large number of identical objects. The polymer is melted by viscous heating by a rotating screw. 
The molten polymer is then forced through a convergent channel (called a gate) into a thin mold 
cavity where it cools. After cooling, the molded part is ejected from the mold and the cycle begins 
again. Often refractory spheres or rods of glass or carbon are added to the polymer in order to 
improve the mechanical properties of the final product. The purpose of this section is to apply [37] 
and [38] to the injection molding of a polymer composite. For this application, [37] and [38] are 
approximations since the molten polymer is non-Newtonian and particle interactions in general 
cannot be neglected. 

One of the advantages of forcing the melt through a convergent channel is that the resulting shear 
heating lowers the melt viscocity, thus facilitating the flow into the mold cavity (Chung 1976). This 
study arose out of the concern that the cooling due to particle migration might offset the heating 
due to viscous dissipation. Fortunately, the temperature drop due to particle migration is negligible. 
Typical parameters for a polymer-glass composite are cf = 3 x 107 erg/g °C, cs = 0.8 x l07 erg/g °C, 
~b = 0.2, R = c = 0.1 mm, ro = 0.15cm, r~ = 2.5 cm and ~t =45 °. Only temperature drops of the 
order of 10°C are important and, from [37] and [38], they are possible only if the lateral temperature 
gradient is of the order 104-105 °C/cm, which is unrealistic. Arbitrarily high temperature drops are 
possible for streamlines close enough to the wall simply because fluid close to the wall takes a long 
time to travel through the channel. However, [37] and [38] are invalid close to the wall since wall 
effects have been neglected. 
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